Abstract
Rainfall is one of the most important factors affecting slope stability. This study employed multi-source monitoring devices to observe the slope displacements in real time under rainfall infiltration and performed numerical simulations to investigate the effects of different rainfall conditions and anti-slip pile configurations on slope stability. Specifically, multi-source monitoring operations were conducted on the high and steep slopes along the Yunmao Expressway. Real-time data on slope deformation, rainfall, and displacement at the tops of anti-slip piles were collected and analyzed, and numerical simulations were conducted using Geo Studio finite-element software. The findings indicated that abrupt deformation of slopes occurs once a threshold rainfall amount is surpassed and sustained over a specific duration. Slope displacement decreased with increasing slope depth above the potential slip fracture surface, with a more rapid reduction in deformation rates observed in slopes reinforced with anti-slip piles. For equivalent rainfall amounts, short-duration, intense rainfalls led to a rapid decrease in the slope safety factor, which also recovered rapidly once the rainfall ceased, in contrast to long-duration, mild rainfalls. The presence and location of anti-slip piles significantly influenced slope stability; therefore, project implementation should carefully consider factors such as cost and duration for optimal decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.