Abstract
MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.