Abstract
Advancements in Internet of Energy (IoE) technologies drive the development of several energy efficient frameworks for better energy optimization, economic savings, safety, and security in smart homes. However, certain challenges such as real-time operational data for each micro-moment, proper application of data fusion techniques, and end-to-end computing and deployment architecture prevent the establishment of an effective energy-efficient framework to provide personalized energy-saving recommendations. This work presents energy management for smart spaces (EMSS), the proposed energy efficiency framework implemented in an edge-cloud computing platform that fuses data from heterogeneous data sources (environmental sensors, camera, plug data, etc.) at appropriate data fusion levels and process them to generate actionable, explainable, personalized, and persuasive recommendations at the right moment. The user response to the generated recommendations triggers the actuators to perform respective energy-saving actions and provide more personalized future recommendations. Further, SMARTHome - a data generation framework based on configurable scenario files and a set of software codes was proposed to generate synthetic data with respect to different building types and micro-moments. The functionalities of the EMSS (device and user registration), user dashboard, analytics, and energy-saving recommendations were made accessible to the user through web and mobile applications. The validation analysis of the EMSS was performed by (i) comparative analysis of the machine learning and deep learning algorithms used by the decision engine to generate energy-saving recommendations and (ii) benchmarking of EMSS based on the taxonomy of data fusion-based energy efficiency frameworks for smart homes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.