Abstract

Sensor management in multi-object stochastic systems is a theoretically and computationally challenging problem. This paper presents a new approach to the multi-target multi-sensor control problem within the partially observed Markov decision process (POMDP) framework. We model the multi-object state as a labeled multi-Bernoulli random finite set (RFS), and use the labeled multi-Bernoulli filter in conjunction with minimizing a task-driven control objective function: posterior expected error of cardinality and state (PEECS). A major contribution is a guided search for multi-dimensional optimization in the multi-sensor control command space, using coordinate descent method. In conjunction with the Generalized Covariance Intersection method for multi-sensor fusion, a fast multi-sensor control algorithm is achieved. Numerical studies are presented in several scenarios where numerous controllable (mobile) sensors track multiple moving targets with different levels of observability. The results show that our method works significantly faster than the approach taken by the state of the art methods, with similar tracking errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.