Abstract

Over complex terrain, convection and thermally-driven circulations simultaneously occur under fair weather conditions during the day. To investigate these processes on the basis of observations, simultaneous measurements on different scales are necessary. Comprehensive measurements with the mobile observation platform KITcube were performed on the mountainous island of Corsica during the HYdrological cycle in Mediterranean EXperiment (HyMeX) field campaign in late summer and autumn 2012. Using a case study, the benefit of integrated measurement systems and coordinated scan strategies was demonstrated, and experimental evidence of, and new insights into, convective and advective transport processes in a valley were obtained. Convection, thermally-driven circulations and topographic and advective venting led to the diurnal cycle of temperature, humidity and wind over complex terrain in the mountain atmospheric boundary layer (mountain ABL), which was deeper than an ABL over homogeneous terrain under equal surface forcing. Due to the combined transport processes on different scales, the mountain ABL in a valley also extended beyond the convection layer, which was characterized by surface-based, buoyancy-driven turbulent mixing. Strong subsidence, with a vertical velocity of about 1 m s $$^{-1}$$ , was present within the mountain ABL for several hours around noon and suppressed the convection-layer growth. Above the layer with subsidence, elevated vertical motions, consisting of alternating updrafts and downdrafts, occurred. Once the convection layer grew to the bottom of the layer with elevated vertical motions, surface-based convective cells occasionally coupled to the elevated updrafts, as a result of which the convection layer rapidly deepened.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.