Abstract

Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the scale of a few nano-meter, to the meso- and macro-scale both in the sol and gel states. Xyloglucan self-assembly is described as multi-step and hierarchical process with different levels of organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call