Abstract

To address the challenges of climate change, significantly more geologic carbon sequestration projects are beginning. The characterization of the subsurface and the migration of the plume of supercritical carbon dioxide are two elements of carbon sequestration that can be addressed through the use of the available seismic methods in the oil and gas industry. In an enhanced oil recovery site in Farnsworth, TX, we employed three separate seismic techniques. The three-dimensional (3D) surface seismic survey required significant planning, design, and processing, but produces both a better understanding of the subsurface structure and a three-dimensional velocity model, which is essential for the second technique, a timelapse vertical seismic profile, and the third technique, cross-well seismic tomography. The timelapse 3D Vertical Seismic Profile (3D VSP) revealed both significant changes in the reservoir between the second and third surveys and geo-bodies that may represent the extent of the underground carbon dioxide. The asymmetry of the primary geo-body may indicate the preferential migration of the carbon dioxide. The third technique, cross-well seismic tomography, suggested a strong correlation between the well logs and the tomographic velocities, but did not observe changes in the injection interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call