Abstract

Abstract In this work, a multi-scale pore network with fractures is developed against experimental data in a wide range of degrees of water saturation. The pore network is constructed based on the measured microstructure information at several length scales. The gas transport is predicted by different gas transport equations (e.g. Javadpour, dusty gas model (DGM), Civan and Klinkenberg), which can consider the fundamental physics mechanisms in tight porous media, such as Knudsen diffusion and viscous flow. Then, the model is applied to simulating the gas permeability of the Callovo-Oxfordian (COx) claystone. The predicted gas permeability is basically in good agreement with the experimental data under different degrees of water saturation. Then the effects of micro-fissures are studied. The results suggest that this model can predict the gas flow in other tight porous media as well and can be applied to other fields such as carbon capture and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.