Abstract

Background: Compact bone mainly consists of cylindrical osteon structures. In microgravity, the change in the mechanical microenvironment of osteocytes might be the root cause of astronauts’ bone loss during space flights. Methods: A multi-scale three-dimensional (3D) fluid–solid coupling finite element model of osteons with a two-stage pore structure was developed using COMSOL software based on the natural structure of osteocytes. Gradients in gravitational fields of [Formula: see text]1, 0, 1, 2.5, and 3.7[Formula: see text]g were used to investigate the changes in the mechanical microenvironment on osteocyte structure. The difference in arteriole pulsating pressure and static compression stress caused by each gravity gradient was investigated. Results: The mechanical response of osteocytes increased with the value of g, compared with the Earth’s gravitational field. For instance, the fluid pressure of osteocytes and the von Mises stress of bone matrix near lacunae decreased by 31.3% and 99.9%, respectively, in microgravity. Under static loading, only about 16.7% of osteocytes in microgravity and 58.3% of osteocytes in the Earth’s gravitational field could reach the fluid shear stress threshold of biological reactions in cell culture experiments. Compared with the Earth’s gravitational field, the pressure gradient inside osteocytes severely decreased in microgravity. Conclusion: The mechanical microenvironment of osteocytes in microgravity might cause significant changes in the mechanical microenvironment of osteocytes, which may lead to disuse osteoporosis in astronauts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.