Abstract
<>With regards to the lack of crisp edges and a poor recovery of high frequency information such as details in deblurred motion pictures, this research proposes a multi-scale adversarial deblurring network with gradient guidance (MADN). The algorithm uses the classical generative adversarial network (GAN) framework, consisting of a generator and a discriminator. The generator includes a multi-scale convolutional network and a gradient feature extraction network. The multi-scale convolutional network extracts image features at different scales with a nested connection residual codec structure to improve the image edge structure recovery and to increase the perceptual field. This gradient network incorporates with intermediate scale features to extract the gradient features of blurred images to obtain their high frequency information. The generator combines the gradient and multiscale features to recover the remaining high-frequency information in a deblurred image. The loss function of MADN is formed in this research combining adversarial loss, pixel L2-norm loss and mean absolute error. Compared to those experimental results obtained from current deblurring algorithms, our experimental results indicate visually clearer images retaining more information such as edges and details. This MADN algorithm enhances the peak signal-to-noise ratio by an average of 3.32dB and the structural similarity by an average of 0.053.<>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.