Abstract
<p>In recent years, the industrial Internet has developed rapidly. In order to improve the reliability, real-time, and economy, Automated Guided Vehicle (AGV) in intelligent manufacturing system becomes an indispensable technology. However, the current AGV system relies too much on the fixed network bandwidth environment in information transmission and management. When the traffic demand changes frequently, this form of network configuration lacks network resource management mechanism. Further, it leads to the problems of delay, waste of network flow, and inability to dynamically allocate network resources. So it is vital to improve the AGV system. Therefore, this paper proposes three predictive control algorithms and a Network Cable Scheduling algorithm to manage the network resources. They are Markov Chain Linear Programming Regulation (MCLPR) algorithm, Prophet Linear Programming Regulation (PLPR) algorithm, and Machine Learning Linear Programming Regulation (MLLPR) algorithm. The experimental results show that PLPR and MLLPR algorithm have high efficiency in the aspect of regulation. MLLPR algorithm has the lowest cost. MLLPR algorithm has the strongest leakage limitation ability, followed by PLPR algorithm. The balance regulation efficiency of MLLPR in none &ldquo;4 + 1&rdquo; mode is the highest in different network cable modes.</p> <p>&nbsp;</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.