Abstract

<abstract><p>In this paper, we propose a Holling-IV predator-prey system considering the perturbation of a slow-varying environmental capacity parameter. This study aims to address how the slowly varying environmental capacity parameter affects the behavior of the system. Based on bifurcation theory and the slow-fast analysis method, the critical condition for the Hopf bifurcation of the autonomous system is given. The oscillatory behavior of the system under different perturbation amplitudes is investigated, corresponding mechanism explanations are given, and it is found that the motion pattern of the non-autonomous system is closely related to the Hopf bifurcation and attractor types of the autonomous system. Meanwhile, there is a bifurcation hysteresis behavior of the system in bursting oscillations, and the bifurcation hysteresis mechanism of the system is analyzed by applying asymptotic theory, and its hysteresis time length is calculated. The final study found that the larger the perturbation amplitude, the longer the hysteresis time. These results can provide theoretical analyses for the prediction, regulation, and control of predator-prey populations.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.