Abstract

In this paper, multiscale modeling of polymer composites consisting of Graphene Foam (GF) and Polydimethylsiloxane (PDMS) is conducted, and their Thermal Conductivity (TC) is investigated through the use of nano-to-microscale analyses. The TC of the PDMS matrix and GF is calculated using the Molecular Dynamics (MD) method. The effective properties of the composites are computed utilizing the Mechanics of Structure Genome (MSG) coupled with Carrera Unified Formulation (CUF) as a novel micromechanical method, which allows an accurate description of the problem resulting in a high-fidelity analysis. Due to the unique interconnected structure of GF, the TC of GF/PDMS composite reaches 0.406 Wm–1 K–1 for GF with 63% porosity, which is about 69% ± 2% higher than that of neat PDMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call