Abstract

ABSTRACT High concentrations of nutrients are observed in the effluent of different wastewater treatment plants, while additional costs of post-treatment systems and low-value sludge are the main reasons for releasing such effluents. The present study aims to introduce an increased procedure for simultaneous nutrient recovery and biomass production using an algae-based post-treatment technique. The procedure has been utilized by two well-known strains (Scenedesmus dimorphus and Chlorella vulgaris) cultivated in different N/P ratios (16, 62, and 108) and trace metals (0, 50%, and 100%) in a synthetic meat processing wastewater as a model to investigate effects of the factors on microalgal cultivation and nutrient removal. Pareto statistical analysis and Multi Response Surface methodology were applied to determine the priority of factors and their optimum values, respectively. The unbalanced N/P ratio and lack of trace metals were introduced as two main reasons for the significant decrease of about 60% and 120% in nutrient removal and biomass production. The optimized procedure resulted in significant increases in the removal efficiencies where 90%, 83%, and 65% were achieved for ammonium, nitrate, and phosphate, respectively. Moreover, a 72% increase in biomass production was reported in the optimal points. The results of the Pareto analysis highlighted the significant superiority (about two times) of the trace metals in removal efficiencies. Finally, experimental data has also been modelled by Verhulst logistic model that successfully described the microalgae growth. This procedure showed promising results of microalgal systems to supersede the conventional post-treatment systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call