Abstract
This paper investigates on the use of Wavelet Transform (WT) to model and recognize the utterances of Consonant - Vowel (CV) speech units in noisy environments. The peculiarity of the proposed method lies in the fact that using WT, non stationary nature of the speech signal can be accurately considered. A hybrid feature extraction namely Normalized Wavelet Hybrid Feature (NWHF) using the combination of Classical Wavelet Decomposition (CWD) and Wavelet Packet Decomposition (WPD) along with z-score normalization technique are studied here. CV speech unit recognition tasks performed for both noisy and clean speech units using Artificial Neural Network (ANN) and k - Nearest Neighborhood (k - NN) are also presented. The result indicates the robustness of the proposed technique based on WT in additive noisy condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Image, Graphics and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.