Abstract
In this study, multi-pulse chaotic dynamics of an unbalanced Jeffcott rotor with gravity effect are investigated. Based on the solvability conditions obtained for the case of one-to-one internal resonance and primary resonance, canonical transformations are used to reduce these ordinary differential equations to a standard form suitable for applying the energy-phase method. The global perturbation technique is employed to demonstrate the existence of chaotic dynamics by identifying multi-pulse jumping orbits in the perturbed phase space. The chaotic dynamics results from the existence of Silnikov’s type of homoclinic orbits and the parameter set for which the system may exhibit chaotic motions in the sense of Smale horseshoes are obtained analytically. The global solutions are then interpreted in terms of the physical motion of the rotor system, and the dynamical mechanism of pattern conversion between the localized mode and the coupled mode is revealed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have