Abstract

Differential Evolution (DE) is an informative and direct approach to optimization with limited control parameters. This paper presents a multi-position and orientation analysis of a Spatial Parallel Manipulator considering the influence of physical constraints, such as limb lengths and spherical joint motion. The synthesis process primarily involves determining the scopes of the permanent base and movable platform relative to the axes of the revolute joints, enabling the moving platform to traverse a predetermined range of positions. The dimensions of the moving platform and fixed base are determined by considering restrictions on joint motion to design the parallel manipulator using the DE algorithm method. The synthesis procedure is illustrated with a numerical example involving eight positions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call