Abstract

This paper presents a hybrid strategy combined with a differential evolution (DE) algorithm and a modified particle swarm optimization (PSO), denominated as DEMPSO, to solve the nonlinear model of the forward kinematics. The proposed DEMPSO takes the best advantage of the convergence rate of MPSO and the global optimization of DE. A comparison study between the DEMPSO and the other optimization algorithms such as the DE algorithm, PSO algorithm, and MPSO algorithm is performed to obtain the numerical solution of the forward kinematics of a 3-RPS parallel manipulator. The forward kinematic model of the 3-RPS parallel manipulator has been developed and it is essentially a nonlinear algebraic equation which is dependent on the structure of the mechanism. A constraint equation based on the assembly relationship is utilized to express the position and orientation of the manipulator. Five configurations with different positions and orientations are used as an example to illustrate the effectiveness of the proposed DEMPSO for solving the kinematic problem of parallel manipulators. And the comparison study results of DEMPSO and the other optimization algorithms also show that DEMPSO can provide a better performance regarding the convergence rate and global searching properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.