Abstract

A novel spot-size converter (SSC) incorporating a phase-matched polycrystalline-silicon (Poly-Si) multilayer is proposed and optimized for efficient nanophotonic coupling, which can be fabricated by using the complementary metal–oxide–semiconductor (CMOS) compatible process and can be directly integrated. An efficient algorithm, combining the rigorous $\mathbf{H}$ - field-based full-vectorial finite-element method and the least square boundary residual method, is developed for the design optimization of the SSC. The use of simple single-layer and multilayer Poly-Si-based SSCs is investigated, in which the coupling process and phase matching for isolated and composite waveguides are also carried out. The coupling loss can be reduced to 2.72 dB by using an 11-Poly-Si-layer-based SSC. The on-chip integrated SSC opens up the feasibility of a low-cost passive-aligned fiber-pigtailed electronic–photonic integrated-circuit (PIC) platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.