Abstract

Piezoelectric Energy Harvesting (PEH) has emerged as a promising alternative to traditional batteries for self-powered sensors. This paper proposed a multi-pillar piezoelectric stacks oscillating float wave energy harvesting device that utilizes a unique rack, pinion, and cam system to convert the heaving motion of the float into a unidirectional rotation. Subsequently, the cam actuates a linkage rod, driving multiple piezoelectric stack pillars to generate electrical energy. The innovative cam mechanism introduces frequency upconversion to improve the efficiency of power generation in conjunction with piezoelectricity. A theoretical methodology is also derived and validated with simulation and experimental model tests to characterize the output power. The results demonstrate that the system attains a peak output voltage of 32 V and a power output of 3.5 mW when utilizing 10 piezoelectric translation units connected in parallel. This achievement is facilitated by the oceanic force generated by wave motion, which exerts a force of 500 N over a wave period of 3 s. The sustainable energy solutions are developed for remote sensor applications in marine environments, offering potential advancements in the field of autonomous and self-powered sensing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call