Abstract
Silicon vacancy centers in silicon carbide are promising candidates for storing and manipulating quantum information. Implementation of fast quantum gates is an essential requirement for quantum information processing. In a low magnetic field, the resonance frequencies of silicon vacancy spins are in the range of a few MHz, the same order of magnitude as the Rabi frequencies of typical control fields. As a consequence, the rotating wave approximation becomes invalid and nonlinear processes like the absorption and emission of multiple photons become relevant. This work focuses on multi-photon transitions of negatively charged silicon vacancies driven by a strong RF field. We present continuous-wave optically detected magnetic resonance (ODMR) spectra measured at different RF powers to identify the 1-, 2-, and 3-RF photon transitions of different types of the silicon vacancy in the 6$H$-SIC polytype. Time-resolved experiments of Rabi oscillations and free induction decays of these multiple RF photon transitions were observed for the first time. Apart from zero-field data, we also present spectra in magnetic fields with different strength and orientation with respect to the system's symmetry axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.