Abstract

(1–x)K0.48Na0.56NbO3–xBi0.5Li0.5ZrO3 (KNN–xBLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as TC were systematically investigated. The orthorhombic–tetragonal (O–T) two phases were detected in all (1–x)K0.48Na0.56NbO3–xBi0.5Li0.5ZrO3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase (CO/CT= 45/55), high piezoelectric properties of d33 = 239 pC/N, kp = 34%, and Pr = 25.23 μC/cm2 were obtained at x = 0.04. Moreover, a high TC = 348°C was also achieved in KNN–xBLZ ceramic at x = 0.04. These results indicate that (1–x)K0.48Na0.56NbO3–xBi0.5Li0.5ZrO3 system is a promising candidate for high-temperature piezoelectric devices.

Highlights

  • Piezoelectric ceramics are widely used in sensors, transducers, actuators, and surface acoustic wave devices because of their ability to convert electrical energy into mechanical energy and vice versa [1]

  • Abstract: (1–x)K0.48Na0.56NbO3–xBi0.5Li0.5ZrO3 (KNN–xBLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as TC were systematically investigated

  • A high TC = 348 °C was achieved in KNN–xBLZ ceramic at x = 0.04

Read more

Summary

Introduction

Piezoelectric ceramics are widely used in sensors, transducers, actuators, and surface acoustic wave devices because of their ability to convert electrical energy into mechanical energy and vice versa [1]. Abstract: (1–x)K0.48Na0.56NbO3–xBi0.5Li0.5ZrO3 (KNN–xBLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as TC were systematically investigated. Our previous work [12,13] indicated that excessive Na2O which was to compensate the volatilization of Na+ could effectively improve the piezoelectric properties by 10%–40% in KNN ceramics.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.