Abstract
Injection-locked oscillators divide at very high frequencies and consume low power. They are not widely deployed in commercial products because they operate over small, often unpredictable, ranges of input frequencies. Ring oscillators as dividers are interesting because they are compact, and capable of a multi-phase output, including quadrature phases. Using a generalized Adler's equation for large injections, we analyze the operation of injection-locked ring oscillators and derive expressions for the input lock range. We discover that injection in the correct progressive phases greatly widens the lock range; all that is needed is the right delay cell circuit, and the injection input in one or two phases. As proof of concept, divide-by-two and six prototypes are built. The measured lock range spans DC to 1.5 the free-running frequency, the highest reported to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.