Abstract

Hafnium (Hf) is an industrially important material due to its large neutron absorption cross-section and its high corrosion resistance. When subjected to high pressure, Hf phase transforms from its hexagonal close packed α-Hf phase to the hexagonal ω-Hf phase. Upon further compression, ω-Hf phase transforms to the body centered cubic β-Hf phase. In this study, the high pressure phase transformations of Hf are studied by compressing and decompressing a well-characterized Hf sample in diamond anvil cells up to 120 GPa while collecting x-ray diffraction data. The phase transformations of Hf were compared in both a He pressure transmitting medium (PTM) and no PTM over several experiments. It was found that the α-Hf to ω-Hf phase transition occurs at a higher pressure during compression and lower pressure during decompression with a helium (He) PTM compared to using no PTM. There was little difference in the ω-Hf to β-Hf phase transition pressure between the He PTM and no PTM. The equation of state was fit for all three phases of Hf and under both PTM and no-PTM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.