Abstract

When the dielectrophoresis technology is used to manipulate micron-sized particles, the interaction between particles should not be ignored because of the particle-particle interaction. Especially, when multiple particles (number of particles is above 2) are simultaneously manipulated, the interaction between neighboring particles will affect the results of the manipulation. This research investigates the interaction of particles caused dielectrophoresis effect by the Arbitrary Lagrangian-Eulerian (ALE) method based on the hypothesis of the thin layer of the electric double layer at the microscale. The mathematics model can be solved simultaneously by the finite element method for the AC electric field, the flow field around the suspended particles and the particle mechanics at the micrometer scale. In this study, the particle conductivity and the direction of the electric field are investigated, we find that particle conductivity and electric field direction pose an impact on particle movement, and the research reveal the law of microparticle dielectrophoresis movement, which could offer theoretical and technology support to profoundly understand the precise manipulation of particles in microfluidic chips by the dielectrophoresis effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.