Abstract

Knowledge of herbicidal targets is critical for weed management and food safety. The phytotoxin isovaleric acid (ISA) is effective against weeds with a broad spectrum, carries low environmental risks, and is thus an excellent herbicide lead. However, the biochemical and molecular mechanisms underlying the action of ISA remain unclear. Multi-omics data showed that acetyl coenzyme A (acetyl-CoA) was the key affected metabolite, and that citrate synthase (CS) 4 was substantially down-regulated under ISA treatment in Echinochloa crus-galli leaves. In particular, the transcript level of EcCS4 was the most significantly regulated among the six genes involved in the top 10 different pathways. The EcCS4 encodes a protein of 472 amino acids and is localized to the cell membrane and mitochondria, similar to the CS4s of other plants. The protein content of EcCS4 was down-regulated after ISA treatment at 0.5 h. ISA markedly inhibited the CS4 activity in vitro in a concentration-dependent manner (IC50 = 41.35 μM). In addition, the transgenic rice plants overexpressing EcCS4 (IC50 = 111.8 mM for OECS4-8 line) were more sensitive, whereas loss-of-function rice mutant lines (IC50 = 746.5 mM for oscs4-19) were more resistant to ISA, compared to wild type (WT) plants (IC50 = 355.6 mM). CS4 was first reported as a negative regulator of plant responses to ISA. These results highlight that CS4 is a candidate target gene for the development of novel herbicides and for breeding herbicide-resistant crops. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call