Abstract
We examined the molecular regulation of porphyrin biosynthesis and protective responses in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum Fe-chelatase (BjFeCh) after treatment with acifluorfen (AF). During the photodynamic stress imposed by AF, transcript levels of BjFeCh in transgenic plants increased greatly; moreover, transcript levels of OsFeCh2 remained almost constant, whereas in wild type (WT) plants they were considerably down-regulated. In the heme branch, transgenic plants exhibited greater levels of OsFC and HO transcripts than WT plants in the untreated stems as well as in the AF-treated leaves and stems. Both WT and transgenic plants treated with AF substantially decreased transcript levels for all the genes in the chlorophyll branch, with less decline in transgenic plants. After AF treatment, ascorbate (Asc) content and the redox Asc state greatly decreased in leaves of WT plants; however, in transgenic plants both parameters remained constant in leaves and the Asc redox state increased by 20% in stems. In response to AF, the leaves of WT plants greatly up-regulated CatA, CatB, and GST compared to those of transgenic plants, whereas, in the stems, transgenic plants showed higher levels of CatA, CatC, APXb, BCH, and VDE. Photochemical quenching, qP, was considerably dropped by 31% and 18% in WT and transgenic plants, respectively in response to AF, whereas non-radiative energy dissipation through non-photochemical quenching increased by 77% and 38% in WT and transgenic plants, respectively. Transgenic plants treated with AF exhibited higher transcript levels of nucleus-encoded photosynthetic genes, Lhcb1 and Lhcb6, as well as levels of Lhcb6 protein compared to those of WT plants. Our study demonstrates that expression of BjFeCh in transgenic plants influences not only the regulation of porphyrin biosynthesis through maintaining higher levels of gene expression in the heme branch, but also the Asc redox function during photodynamic stress caused by AF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.