Abstract
A typical wind system captures wind energy and converts it into electricity, which is then converted to DC for battery storage using an AC/DC converter; an inverter then supplies AC electricity at the grid frequency. However, this solution involves losses in electronic components and incurs costs and environmental impacts associated with battery storage. To address these issues, a different wind system layout configuration is considered, where the energy storage duties are assumed by a hydro storage system employing a reversible hydraulic pump (referred to as a Pump as Turbine). This solution utilises an elevated reservoir connected to the Pump as Turbine to compensate for fluctuations in wind and load; this approach offers lower costs, a longer lifespan, reduced maintenance, and a smaller waste management cost. This study focuses on a comprehensive sensitivity analysis of the new wind system power layout, considering multiple objectives. Specifically, the analysis targets the net change in the mass of water (potential energy) stored in the pumped hydro system, the captured wind energy, and the torque provided in hydraulic turbine mode. On the other hand, the design variables are represented by the Pump as Turbine-specific speed, the hydraulic system gearbox ratio, and the pump head. To assess how solutions are affected by random changes in wind speed and external load, the sensitivity analysis considers the multi-objective optimisation problem showing for both the wind speed and the external load a stochastic contribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have