Abstract

There has been significant interest in additively manufactured lattice structures in recent years due to their enhanced mechanical and multi-physics properties, making them suitable candidates for various applications. This study presents a multi-parameter implicit equation model for designing body-centred cubic (BCC) lattice structures. The model is used in conjunction with a multi-objective genetic algorithm (MOGA) approach to maximise the stiffness of the BCC lattice structure while minimising von-Mises stress within the structure under a specific loading condition. The selected design from the MOGA at a specific lattice density is compared with the classical BCC lattice structure and the designs generated by a single-objective genetic algorithm, which focuses on maximising stiffness or minimising von-Mises stress alone. By conducting a finite element analysis on the optimised samples and performing mechanical testing on the corresponding 3D-printed specimens, it was observed that the optimised lattice structures exhibited a substantial improvement in mechanical performance compared to the classical BCC model. The suitability of multi-objective and single-objective optimisation approaches for designing lattice structures was further investigated by comparing the corresponding designs in terms of their stiffness and maximum von-Mises stress values. The results from the numerical analysis and experimental testing demonstrate the significance of the application of an appropriate optimisation strategy for designing lattice structures for additive manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call