Abstract

In particle accelerators, RF cavities are used to accelerate charged particle beams to designed high energy for physical applications. In a typical accelerator design, the optimization of RF cavities and the optimization of beam dynamics are carried out in separate studies. For a more general and unrestricted accelerator design, a coupled optimization of the RF cavities and the beam parameters is required. For this coupled optimization problem, we have developed an integrated electromagnetics and beam dynamics workflow management system. Within this system, the geometries for a set of cavity components are first adjusted; the field modes are then computed with an electromagnetics program, and imported into a beam dynamics program for beam dynamics simulation. This workflow is encapsulated into a parallel multi-objective optimizer to achieve the integrated accelerator design optimization. A multi fidelity strategy is developed to improve the speed of the optimizer. This integrated global optimization capability is illustrated using a photoinjector design example and yields an improved design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.