Abstract

The performance of low-pressure axial flow fans is directly affected by the three-dimensional bending and twisting of the blades. A new blade design method is adopted in this work, where the radial distribution of blade angle and blade bending angle is composed of standard-form rational quadratic Bézier curves. Dendrite Net is then trained to predict the pneumatic performance of the fan. A non dominated sorting genetic algorithm is employed to solve the global optimization problem of the total pressure coefficient and efficiency. The simulation results show that the optimal blade load distribution along the radial direction becomes uniform, and the suction surface separation vortex and passage vortex are restrained. On the other hand, the tip leakage vortex is enhanced and moves toward the blade leading edge. According to the experimental results, the maximum efficiency increases by 5.44%, and the maximum total pressure coefficient increases by 2.47% after optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call