Abstract
With the increasing global attention to environmental protection, microgrids with efficient usage of renewable energy have been widely developed. Currently, the intermittent nature of renewable energy and the uncertainty of its demand affect the stable operation of a microgrid. Additionally, electric vehicles (EVs), as an impact load, could severely affect the safe dispatch of the microgrid. To solve these problems, a multi-objective optimization model was established based on the economy and the environmental protection of a microgrid including EVs. The linear weighting method based on two-person zero-sum game was used to coordinate the full consumption of renewable energy with the full bearing of load, and balance the two objectives better. Moreover, the adaptive simulated annealing particle swarm optimization algorithm (ASAPSO) was used to solve the multi-objective optimization model, and obtain the optimal solution in the unit. The simulation results showed that the multi-objective weight method could diminish the influence of uncertainty factors, promoting the full absorption of renewable energy and full load-bearing. Additionally, the orderly charging and discharging mode of EVs could reduce the operation cost and environmental protection cost of the microgrid. Therefore, the improved optimization algorithm was capable of improving the economy and environmental protection of the microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.