Abstract

Multi-objective integer linear and/or mixed integer linear programming (MOILP/MOMILP) are very useful for many areas of application as any model that incorporates discrete phenomena requires the consideration of integer variables. However, the research on the methods for the general multi-objective integer/mixed integer model has been scant when compared to multi-objective linear programming with continuous variables. In this paper, an MOMILP is proposed, which integrates various conflicting objectives. We give importance to the imprecise nature of some of the critical factors used in the modelling that can influence the effectiveness of the model. The uncertainty and the hesitation arising from estimating such imprecise parameters are represented by intuitionistic fuzzy numbers. The MOMILP model with intuitionistic fuzzy parameters is first converted into a crisp MOMILP model, using appropriate defuzzification strategies. Thereafter, the MOMILP is transformed into a single objective problem to yield a compromise solution with an acceptable degree of satisfaction, using suitable scalarisation techniques such as the gamma-connective technique and the minimum bounded sum operator technique. The proposed solution method is applied to several test problems and a multi-objective pharmaceutical supply chain management model with self generated random data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call