Abstract

With the aim of developing a flexible optimization method for managing conflict resolution, this paper concerns itself with site location problems under multi-objectives. As known from the term NIMBY (Not In My Back Yard), disposal site location problems of hazardous waste is an eligible case study associated with environmental and economic concerns. After describing the problem generally as a multi-objective mixed-integer program, we have proposed an intelligence supported approach that extends the hybrid genetic algorithm developed by the author to derive the best-compromise solution. For this purpose, we have developed a novel modeling method of value function using neural networks, and incorporated it into the approach. As a result, we can provide a practical and effective method in which the hybrid strategy maintains its advantages of relying on good matches between the solution methods and the problem properties such as a genetic algorithm for unconstrained discrete optimization and a mathematical program for constrained continuous ones. Finally, by taking an example formulated as a multi-objective mixed-integer linear program, we have examined the effectiveness of the proposed approach numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.