Abstract

We introduce and test a new approach for the bi-objective routing problem known as the traveling salesman problem with profits. This problem deals with the optimization of two conflicting objectives: the minimization of the tour length and the maximization of the collected profits. This problem has been studied in the form of a single objective problem, where either the two objectives have been combined or one of the objectives has been treated as a constraint. The purpose of our study is to find solutions to this problem using the notion of Pareto optimality, i.e. by searching for efficient solutions and constructing an efficient frontier. We have developed an ejection chain local search and combined it with a multi-objective evolutionary algorithm which is used to generate diversified starting solutions in the objective space. We apply our hybrid meta-heuristic to synthetic data sets and demonstrate its effectiveness by comparing our results with a procedure that employs one of the best single-objective approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.