Abstract

This article studies a tri-objective formulation of the inventory routing problem, extending the recently studied bi-objective formulation. As compared to distance cost and inventory cost, which were discussed in previous work, it also considers stockout cost as a third objective. Demand is modeled as a Poisson random variable. State-of-the-art evolutionary multi-objective optimization algorithms and a new method based on swarm intelligence are used to compute approximation of the 3-D Pareto front. A benchmark previously used in bi-objective inventory routing is extended by incorporating a stochastic demand model with an expected value that equals the average demand of the original benchmark. The results provide insights into the shape of the optimal trade-off surface. Based on this the dependences between different objectives are clarified and discussed. Moreover, the performances of the four different algorithmic methods are compared and due to the consistency in the results, it can be concluded that a near optimal approximation to the Pareto front can be found for problems of practically relevant size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call