Abstract

When and why can evolutionary multi-objective optimization (EMO) algorithms cover the entire Pareto set? That is a major concern for EMO researchers and practitioners. A recent theoretical study revealed that (roughly speaking) if the Pareto set forms a topological simplex (a curved line, a curved triangle, a curved tetrahedron, etc.), then decomposition-based EMO algorithms can cover the entire Pareto set. Usually, we cannot know the true Pareto set and have to estimate its topology by using the population of EMO algorithms during or after the runtime. This paper presents a data-driven approach to analyze the topology of the Pareto set. We give a theory of how to recognize the topology of the Pareto set from data and implement an algorithm to judge whether the true Pareto set may form a topological simplex or not. Numerical experiments show that the proposed method correctly recognizes the topology of high-dimensional Pareto sets within reasonable population size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.