Abstract
Artificial neural network (NN) architecture design is a nontrivial and time-consuming task that often requires a high level of human expertise. Neural architecture search (NAS) serves to automate the design of NN architectures and has proven to be successful in automatically finding NN architectures that outperform those manually designed by human experts. NN architecture performance can be quantified based on multiple objectives, which include model accuracy and some NN architecture complexity objectives, among others. The majority of modern NAS methods that consider multiple objectives for NN architecture performance evaluation are concerned with automated feed forward NN architecture design, which leaves multi-objective automated recurrent neural network (RNN) architecture design unexplored. RNNs are important for modeling sequential datasets, and prominent within the natural language processing domain. It is often the case in real world implementations of machine learning and NNs that a reasonable trade-off is accepted for marginally reduced model accuracy in favour of lower computational resources demanded by the model. This paper proposes a multi-objective evolutionary algorithm-based RNN architecture search method. The proposed method relies on approximate network morphisms for RNN architecture complexity optimisation during evolution. The results show that the proposed method is capable of finding novel RNN architectures with comparable performance to state-of-the-art manually designed RNN architectures, but with reduced computational demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.