Abstract

The decentralization of electrical power production is conducive to a more effective and harmonious use of energy resources. For this reason, photovoltaic grid-connected plants (PVGCPs) as well as other renewable energy sources have come into the spotlight in recent years since they improve the supply of electrical power to the grid. The optimization of PVGCP design has been previously addressed in terms of electrical losses with successful results. However, PVGCP performance can be further enhanced if other characteristics, such as power capacity, are taken into consideration. This paper focuses on the optimization of the design of photovoltaic plants with solar tracking. The research described had the following two objectives: (i) the maximization of power capacity; (ii) the minimization of electrical losses. This problem was solved with multi-objective evolutionary algorithms, which have proved to be powerful optimization techniques that are useful for a wide range of objectives. This paper focuses on the NSGA-II and SPEA2, two well-known multi-objective algorithms, and describes how they were used to optimize PVGCPs. The resulting sets of solutions provide the flexibility and adaptability needed to build a PVGCP. These algorithms were thus found to be an effective tool for enhancing PVGCP performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.