Abstract

This study explores the benefits of co-locating wave-wind offshore energy parks. It focuses on the leeward effects of hypothetical wave energy converter (WEC) arrays deployed offshore Viana do Castelo, Portugal, and their synergies with the WindFloat Atlantic wind farm. Wave propagation through arrays of CECO WECs and their near-field effects were simulated using SNL-SWAN model. Furthermore, a multi-objective function to evaluate and choose between WEC arrays was defined. The analysis considered a wave height reduction area index, the q-factor and a new wave energy park layout assessment index (WLA). The effectiveness of arrays was dependent on incident wave direction, layouts with larger spacing achieved higher q-factors, while lower spacing provided better shield protection. The WLA, which considers both power absorption and wave height reduction, was introduced as a decision-making tool. The results also showed that some arrangements could increase accessibility to the turbines by circa 22%, representing about 1957 h/year added to the weather window for maintenance and operation of the park. In summary, this study provides a comprehensive analysis and a decision-making strategy for determining the optimal positioning of WEC arrays, contributing to the advancement of renewable energy technologies, promoting sustainable and efficient utilization of wave and wind resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call