Abstract

This paper proposes a new two-stage optimization method for multi-objective supply chain network design (MO-SCND) problem with uncertain transportation costs and uncertain customer demands. On the basis of risk-neutral and risk-averse criteria, we develop two objectives for our SCND problem. We introduce two solution concepts for the proposed MO-SCND problem, and use them to define the multi-objective value of fuzzy solution (MOVFS). The value of the MOVFS measures the importance of uncertainties included in the model, and helps us to understand the necessity of solving the two-stage multi-objective optimization model. When the uncertain transportation costs and customer demands have joined continuous possibility distributions, we employ an approximation approach (AA) to compute the values of two objective functions. Using the AA, the original optimization problem becomes an approximating mixed-integer multi-objective programming model. To solve the hard approximating optimization problem, we design an improved multi-objective biogeography-based optimization (MO-BBO) algorithm integrated with LINGO software. We also compare the improved MO-BBO algorithm with the multi-objective genetic algorithm (MO-GA). Finally, a realistic dairy company example is provided to demonstrate that the improved MO-BBO algorithm achieves the better performance than MO-GA in terms of solution quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.