Abstract
The Kapur and Otsu methods are widely used image thresholding approaches and they are very efficient in bi-level thresholding applications. Evolutionary algorithms have been developed to extend the Kapur and Otsu methods to the multi-level thresholding case. However, there remains an unsolved argument that neither Kapur nor Otsu objective can optimally fit diverse content contained in different kinds of images. This paper proposes a multi-objective model which seeks to find the Pareto-optimal set with respect to Kapur and Otsu objectives. Based on dominance and diversity criteria, we developed a hybrid multi-objective particle swarm optimization (MOPSO) method by incorporating several intelligent search strategies. The ensemble strategy is also applied to automatically select the best search strategy to perform at various algorithm stages according to its historic performances. The experimental result shows that the solutions to our multi-objective model consistently produce equal or better segmentation results than those by the optimal solutions to the original Kapur and Otsu models, and that the proposed hybrid algorithm with and without the ensemble strategy produces a better approximation to the ideal Pareto front than those obtained by two other MOPSO variants and the MOEA/D. In comparison with the most recent multilevel thresholding methods, our approach also consistently obtains better performance in the segmentation result for several benchmark images.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have