Abstract
In this paper, hierarchical temporal memory network (HTM) was optimized for multi-object recognition. HTM is constructed by temporal module and spatial module, which is formulated by Hawkins and George in 2005 based on prediction theory. Multi-object recognition is a spatial pattern recognition task, so we reduction the temporal module of hierarchical temporal memory network and strengthen the spatial module. Furthermore, sparse representation method was used for capturing the convolution kernels in the network, which simulates the function of the retina cells of the eyes. Moreover, the prediction space is used in the network to accelerate pattern identification. Finally, a four-level network was designed and trained for locomotive object recognition, and the recognition rate is up to 91.4%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have