Abstract

This work contributes multi object detection and dynamic query image based retrieval system. Generally, finding relevance and matching user expectations is very critical based on query key information and these results irrelevant responses which will produce low similarity index. Consequently, CBIR system took a major responsibility of identifying new objects, retrieving similar objects or contents based on multi query and dynamic keywords with improved recall and precision as per requirement of the users. At this juncture, Discrete Curvelet Transform with the incorporation of HOG and HTF based approach is proposed to handle commercial image, medical images and types of multi model images. This proposed approach mainly focuses on extracting scaled features for finding correlation among the query and database images. To start with the process, query image is decomposed into multi level sub images to extract set of texture features at two levels. These features are estimated by Gray Level Co-occurrence Matrix (GLCM) and HOG descriptor based techniques is adapted to find scaled vectors with reduced dimensionality. This method outperform compared as compared to existing method is authenticated from experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.