Abstract
Image-based single-modality compression learning approaches have demonstrated exceptionally powerful encoding and decoding capabilities in the past few years , but suffer from blur and severe semantics loss at extremely low bitrates. To address this issue, we propose a multimodal machine learning method for text-guided image compression, in which the semantic information of text is used as prior information to guide image compression for better compression performance. We fully study the role of text description in different components of the codec, and demonstrate its effectiveness. In addition, we adopt the image-text attention module and image-request complement module to better fuse image and text features, and propose an improved multimodal semantic-consistent loss to produce semantically complete reconstructions. Extensive experiments, including a user study, prove that our method can obtain visually pleasing results at extremely low bitrates, and achieves a comparable or even better performance than state-of-the-art methods, even though these methods are at 2x to 4x bitrates of ours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.