Abstract

In the recent days, the importance of image compression techniques is exponentially increased due to the generation of massive amount of data which needs to be stored or transmitted. Numerous approaches have been presented for effective image compression by the principle of representing images in its compact form through the avoidance of unnecessary pixels. Vector quantization (VA) is an effective method in image compression and the construction of quantization table is an important process is an important task. The compression performance and the quality of reconstructed data are based on the quantization table, which is actually a matrix of 64 integers. The quantization table selection is a complex combinatorial problem which can be resolved by the evolutionary algorithms (EA). Presently, EA became famous to resolve the real world problems in a reasonable amount of time. This chapter introduces Firefly (FF) with Teaching and learning based optimization (TLBO) algorithm termed as FF-TLBO algorithm for the selection of quantization table. As the FF algorithm faces a problem when brighter FFs are insignificant, the TLBO algorithm is integrated to it to resolve the problem. This algorithm determines the best fit value for every bock as local best and best fitness value for the entire image is considered as global best. When these values are found by FF algorithm, compression process takes place by efficient image compression algorithm like Run Length Encoding and Huffman coding. The proposed FF-TLBO algorithm is evaluated by comparing its results with existing FF algorithm using a same set of benchmark images in terms of Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity index (SSIM), Compression Ratio (CR) and Compression Time (CT). The obtained results ensure the superior performance of FF-TLBO algorithm over FF algorithm and make it highly useful for real time applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.