Abstract

Blood oxygenation level dependent (BOLD) resting-state functional magnetic resonance imaging (rs-fMRI) may serve as a sensitive marker to identify possible changes in the architecture of large-scale networks following mild traumatic brain injury (mTBI). Differences in functional connectivity (FC) measurements derived from BOLD rs-fMRI may however be confounded by changes in local cerebrovascular physiology and neurovascular coupling mechanisms, without changes in the underlying neuronally driven connectivity of networks. In this study, multi-modal neuroimaging data including BOLD rs-fMRI, baseline cerebral blood flow (CBF0) and cerebrovascular reactivity (CVR; acquired using a hypercapnic gas breathing challenge) were collected in 23 subjects with reported mTBI (14.6±14.9 months post-injury) and 27 age-matched healthy controls. Despite no group differences in CVR within the networks of interest (P>0.05, corrected), significantly higher CBF0 was documented in the mTBI subjects (P<0.05, corrected), relative to the controls. A normalization method designed to account for differences in CBF0 post-mTBI was introduced to evaluate the effects of such an approach on reported group differences in network connectivity. Inclusion of regional perfusion measurements in the computation of correlation coefficients within and across large-scale networks narrowed the differences in FC between the groups, suggesting that this approach may elucidate unique changes in connectivity post-mTBI while accounting for shared variance with CBF0. Altogether, our results provide a strong paradigm supporting the need to account for changes in physiological modulators of BOLD in order to expand our understanding of the effects of brain injury on large-scale FC of cortical networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call