Abstract
AbstractLight‐based additive manufacturing methods are widely used to print high‐resolution 3D structures for applications in tissue engineering, soft robotics, photonics, and microfluidics, among others. Despite this progress, multi‐material printing with these methods remains challenging due to constraints associated with hardware modifications, control systems, cross‐contamination, waste, and resin properties. Here, a new printing platform coined Meniscus‐enabled Projection Stereolithography (MAPS) is reported, a vat‐free method that relies on generating and maintaining a resin meniscus between a crosslinked structure and bottom window to print lateral, vertical, discrete, or gradient multi‐material 3D structures with no waste and user‐defined mixing between layers. MAPS is compatible with a wide range of resins shown and can print complex multi‐material 3D structures without requiring specialized hardware, software, or complex washing protocols. MAPS's ability to print structures with microscale variations in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties provides a generic method to make advanced materials for a broad range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.