Abstract
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) framework is proposed to account for plant model errors caused by slow aging, drift in operational conditions, or environmental changes. Since PLS decomposition structure enables multi-loop controller design within latent spaces, a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space. In each latent subspace, once the model error exceeds a specific threshold, online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm. Because the IMC extracts the inverse of the minimum part of the internal model as its structure, the IMC controller is self-tuned by explicitly updating the parameters, which are parts of the internal model. Both parameter convergence and system stability are briefly analyzed, and proved to be effective. Finally, the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.