Abstract
This paper proposed a hierarchical multi-level model to study the crystallographic texture induced mechanical anisotropy of AA3104-H19 aluminium sheet from mesoscale to continuum scale. In the mesoscale, full-field crystal plasticity finite element method (CPFEM) was used to provide both in-plane and out-of-plane yield stresses and plastic potential points in various deformation modes. In the continuum scale, these materials sampling points were used to determine the parameters of two phenomenological yield functions (Yld2000-2d in plane stress space and Yld2004-18p in 3D stress space) using associated flow rule (AFR) and non-associated flow rule (non-AFR). The results indicate that higher accuracy obtained by Yld2000-2d and Yld2004-18p yield functions associated with non-AFR in comparison with AFR. These phenomenological models were successfully implemented into finite element (FE) code using an explicit integration scheme to simulate sheet metal forming. It is found that the 3D Yld2004-18p model involved with both in-plane and out-of-plane anisotropies is superior to 2D Yld2000-2d model which only accounts for in-plane anisotropy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have